sha2.c (25084B)
1 /* $OpenBSD: sha2.c,v 1.28 2019/07/23 12:35:22 dtucker Exp $ */
2
3 /*
4 * FILE: sha2.c
5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
6 *
7 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the copyright holder nor the names of contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35 */
36
37 /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
38
39 #include <sys/types.h>
40 #include <string.h>
41
42 #if defined(__APPLE__)
43 #include <machine/endian.h>
44 #else
45 #include <endian.h>
46 #endif
47
48 #include "kore.h"
49 #include "sha2.h"
50
51 /*
52 * UNROLLED TRANSFORM LOOP NOTE:
53 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
54 * loop version for the hash transform rounds (defined using macros
55 * later in this file). Either define on the command line, for example:
56 *
57 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
58 *
59 * or define below:
60 *
61 * #define SHA2_UNROLL_TRANSFORM
62 *
63 */
64 #if defined(__amd64__) || defined(__i386__)
65 #define SHA2_UNROLL_TRANSFORM
66 #endif
67
68 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
69 /*
70 * BYTE_ORDER NOTE:
71 *
72 * Please make sure that your system defines BYTE_ORDER. If your
73 * architecture is little-endian, make sure it also defines
74 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
75 * equivalent.
76 *
77 * If your system does not define the above, then you can do so by
78 * hand like this:
79 *
80 * #define LITTLE_ENDIAN 1234
81 * #define BIG_ENDIAN 4321
82 *
83 * And for little-endian machines, add:
84 *
85 * #define BYTE_ORDER LITTLE_ENDIAN
86 *
87 * Or for big-endian machines:
88 *
89 * #define BYTE_ORDER BIG_ENDIAN
90 *
91 * The FreeBSD machine this was written on defines BYTE_ORDER
92 * appropriately by including <sys/types.h> (which in turn includes
93 * <machine/endian.h> where the appropriate definitions are actually
94 * made).
95 */
96 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
97 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
98 #endif
99
100
101 /*** SHA-224/256/384/512 Various Length Definitions ***********************/
102 /* NOTE: Most of these are in sha2.h */
103 #define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8)
104 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
105 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
106 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
107
108 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
109 #define BE_8_TO_32(dst, cp) do { \
110 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \
111 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \
112 } while(0)
113
114 #define BE_8_TO_64(dst, cp) do { \
115 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \
116 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \
117 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \
118 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \
119 } while (0)
120
121 #define BE_64_TO_8(cp, src) do { \
122 (cp)[0] = (src) >> 56; \
123 (cp)[1] = (src) >> 48; \
124 (cp)[2] = (src) >> 40; \
125 (cp)[3] = (src) >> 32; \
126 (cp)[4] = (src) >> 24; \
127 (cp)[5] = (src) >> 16; \
128 (cp)[6] = (src) >> 8; \
129 (cp)[7] = (src); \
130 } while (0)
131
132 #define BE_32_TO_8(cp, src) do { \
133 (cp)[0] = (src) >> 24; \
134 (cp)[1] = (src) >> 16; \
135 (cp)[2] = (src) >> 8; \
136 (cp)[3] = (src); \
137 } while (0)
138
139 /*
140 * Macro for incrementally adding the unsigned 64-bit integer n to the
141 * unsigned 128-bit integer (represented using a two-element array of
142 * 64-bit words):
143 */
144 #define ADDINC128(w,n) do { \
145 (w)[0] += (u_int64_t)(n); \
146 if ((w)[0] < (n)) { \
147 (w)[1]++; \
148 } \
149 } while (0)
150
151 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
152 /*
153 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
154 *
155 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
156 * S is a ROTATION) because the SHA-224/256/384/512 description document
157 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
158 * same "backwards" definition.
159 */
160 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
161 #define R(b,x) ((x) >> (b))
162 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
163 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
164 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
165 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
166
167 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
168 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
169 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
170
171 /* Four of six logical functions used in SHA-224 and SHA-256: */
172 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
173 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
174 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
175 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
176
177 /* Four of six logical functions used in SHA-384 and SHA-512: */
178 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
179 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
180 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
181 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
182
183
184 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
185 /* Hash constant words K for SHA-224 and SHA-256: */
186 static const u_int32_t K256[64] = {
187 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
188 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
189 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
190 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
191 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
192 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
193 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
194 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
195 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
196 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
197 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
198 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
199 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
200 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
201 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
202 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
203 };
204
205 /* Initial hash value H for SHA-256: */
206 static const u_int32_t sha256_initial_hash_value[8] = {
207 0x6a09e667UL,
208 0xbb67ae85UL,
209 0x3c6ef372UL,
210 0xa54ff53aUL,
211 0x510e527fUL,
212 0x9b05688cUL,
213 0x1f83d9abUL,
214 0x5be0cd19UL
215 };
216
217 /* Hash constant words K for SHA-384 and SHA-512: */
218 static const u_int64_t K512[80] = {
219 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
220 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
221 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
222 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
223 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
224 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
225 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
226 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
227 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
228 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
229 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
230 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
231 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
232 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
233 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
234 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
235 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
236 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
237 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
238 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
239 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
240 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
241 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
242 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
243 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
244 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
245 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
246 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
247 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
248 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
249 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
250 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
251 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
252 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
253 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
254 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
255 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
256 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
257 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
258 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
259 };
260
261 /* Initial hash value H for SHA-512 */
262 static const u_int64_t sha512_initial_hash_value[8] = {
263 0x6a09e667f3bcc908ULL,
264 0xbb67ae8584caa73bULL,
265 0x3c6ef372fe94f82bULL,
266 0xa54ff53a5f1d36f1ULL,
267 0x510e527fade682d1ULL,
268 0x9b05688c2b3e6c1fULL,
269 0x1f83d9abfb41bd6bULL,
270 0x5be0cd19137e2179ULL
271 };
272
273 /* Initial hash value H for SHA-384 */
274 static const u_int64_t sha384_initial_hash_value[8] = {
275 0xcbbb9d5dc1059ed8ULL,
276 0x629a292a367cd507ULL,
277 0x9159015a3070dd17ULL,
278 0x152fecd8f70e5939ULL,
279 0x67332667ffc00b31ULL,
280 0x8eb44a8768581511ULL,
281 0xdb0c2e0d64f98fa7ULL,
282 0x47b5481dbefa4fa4ULL
283 };
284
285 /*** SHA-256: *********************************************************/
286 void
287 SHA256Init(SHA2_CTX *context)
288 {
289 memcpy(context->state.st32, sha256_initial_hash_value,
290 sizeof(sha256_initial_hash_value));
291 memset(context->buffer, 0, sizeof(context->buffer));
292 context->bitcount[0] = 0;
293 }
294
295 #ifdef SHA2_UNROLL_TRANSFORM
296
297 /* Unrolled SHA-256 round macros: */
298
299 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
300 BE_8_TO_32(W256[j], data); \
301 data += 4; \
302 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
303 (d) += T1; \
304 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
305 j++; \
306 } while(0)
307
308 #define ROUND256(a,b,c,d,e,f,g,h) do { \
309 s0 = W256[(j+1)&0x0f]; \
310 s0 = sigma0_256(s0); \
311 s1 = W256[(j+14)&0x0f]; \
312 s1 = sigma1_256(s1); \
313 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
314 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
315 (d) += T1; \
316 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
317 j++; \
318 } while(0)
319
320 void
321 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
322 {
323 u_int32_t a, b, c, d, e, f, g, h, s0, s1;
324 u_int32_t T1, W256[16];
325 int j;
326
327 /* Initialize registers with the prev. intermediate value */
328 a = state[0];
329 b = state[1];
330 c = state[2];
331 d = state[3];
332 e = state[4];
333 f = state[5];
334 g = state[6];
335 h = state[7];
336
337 j = 0;
338 do {
339 /* Rounds 0 to 15 (unrolled): */
340 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
341 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
342 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
343 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
344 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
345 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
346 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
347 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
348 } while (j < 16);
349
350 /* Now for the remaining rounds up to 63: */
351 do {
352 ROUND256(a,b,c,d,e,f,g,h);
353 ROUND256(h,a,b,c,d,e,f,g);
354 ROUND256(g,h,a,b,c,d,e,f);
355 ROUND256(f,g,h,a,b,c,d,e);
356 ROUND256(e,f,g,h,a,b,c,d);
357 ROUND256(d,e,f,g,h,a,b,c);
358 ROUND256(c,d,e,f,g,h,a,b);
359 ROUND256(b,c,d,e,f,g,h,a);
360 } while (j < 64);
361
362 /* Compute the current intermediate hash value */
363 state[0] += a;
364 state[1] += b;
365 state[2] += c;
366 state[3] += d;
367 state[4] += e;
368 state[5] += f;
369 state[6] += g;
370 state[7] += h;
371
372 /* Clean up */
373 a = b = c = d = e = f = g = h = T1 = 0;
374 }
375
376 #else /* SHA2_UNROLL_TRANSFORM */
377
378 void
379 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
380 {
381 u_int32_t a, b, c, d, e, f, g, h, s0, s1;
382 u_int32_t T1, T2, W256[16];
383 int j;
384
385 /* Initialize registers with the prev. intermediate value */
386 a = state[0];
387 b = state[1];
388 c = state[2];
389 d = state[3];
390 e = state[4];
391 f = state[5];
392 g = state[6];
393 h = state[7];
394
395 j = 0;
396 do {
397 BE_8_TO_32(W256[j], data);
398 data += 4;
399 /* Apply the SHA-256 compression function to update a..h */
400 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
401 T2 = Sigma0_256(a) + Maj(a, b, c);
402 h = g;
403 g = f;
404 f = e;
405 e = d + T1;
406 d = c;
407 c = b;
408 b = a;
409 a = T1 + T2;
410
411 j++;
412 } while (j < 16);
413
414 do {
415 /* Part of the message block expansion: */
416 s0 = W256[(j+1)&0x0f];
417 s0 = sigma0_256(s0);
418 s1 = W256[(j+14)&0x0f];
419 s1 = sigma1_256(s1);
420
421 /* Apply the SHA-256 compression function to update a..h */
422 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
423 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
424 T2 = Sigma0_256(a) + Maj(a, b, c);
425 h = g;
426 g = f;
427 f = e;
428 e = d + T1;
429 d = c;
430 c = b;
431 b = a;
432 a = T1 + T2;
433
434 j++;
435 } while (j < 64);
436
437 /* Compute the current intermediate hash value */
438 state[0] += a;
439 state[1] += b;
440 state[2] += c;
441 state[3] += d;
442 state[4] += e;
443 state[5] += f;
444 state[6] += g;
445 state[7] += h;
446
447 /* Clean up */
448 a = b = c = d = e = f = g = h = T1 = T2 = 0;
449 }
450 #endif /* SHA2_UNROLL_TRANSFORM */
451
452 void
453 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
454 {
455 u_int64_t freespace, usedspace;
456
457 /* Calling with no data is valid (we do nothing) */
458 if (len == 0)
459 return;
460
461 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
462 if (usedspace > 0) {
463 /* Calculate how much free space is available in the buffer */
464 freespace = SHA256_BLOCK_LENGTH - usedspace;
465
466 if (len >= freespace) {
467 /* Fill the buffer completely and process it */
468 memcpy(&context->buffer[usedspace], data, freespace);
469 context->bitcount[0] += freespace << 3;
470 len -= freespace;
471 data += freespace;
472 SHA256Transform(context->state.st32, context->buffer);
473 } else {
474 /* The buffer is not yet full */
475 memcpy(&context->buffer[usedspace], data, len);
476 context->bitcount[0] += (u_int64_t)len << 3;
477 /* Clean up: */
478 usedspace = freespace = 0;
479 return;
480 }
481 }
482 while (len >= SHA256_BLOCK_LENGTH) {
483 /* Process as many complete blocks as we can */
484 SHA256Transform(context->state.st32, data);
485 context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
486 len -= SHA256_BLOCK_LENGTH;
487 data += SHA256_BLOCK_LENGTH;
488 }
489 if (len > 0) {
490 /* There's left-overs, so save 'em */
491 memcpy(context->buffer, data, len);
492 context->bitcount[0] += len << 3;
493 }
494 /* Clean up: */
495 usedspace = freespace = 0;
496 }
497
498 void
499 SHA256Pad(SHA2_CTX *context)
500 {
501 unsigned int usedspace;
502
503 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
504 if (usedspace > 0) {
505 /* Begin padding with a 1 bit: */
506 context->buffer[usedspace++] = 0x80;
507
508 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
509 /* Set-up for the last transform: */
510 memset(&context->buffer[usedspace], 0,
511 SHA256_SHORT_BLOCK_LENGTH - usedspace);
512 } else {
513 if (usedspace < SHA256_BLOCK_LENGTH) {
514 memset(&context->buffer[usedspace], 0,
515 SHA256_BLOCK_LENGTH - usedspace);
516 }
517 /* Do second-to-last transform: */
518 SHA256Transform(context->state.st32, context->buffer);
519
520 /* Prepare for last transform: */
521 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
522 }
523 } else {
524 /* Set-up for the last transform: */
525 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
526
527 /* Begin padding with a 1 bit: */
528 *context->buffer = 0x80;
529 }
530 /* Store the length of input data (in bits) in big endian format: */
531 BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
532 context->bitcount[0]);
533
534 /* Final transform: */
535 SHA256Transform(context->state.st32, context->buffer);
536
537 /* Clean up: */
538 usedspace = 0;
539 }
540
541 void
542 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
543 {
544 SHA256Pad(context);
545
546 #if BYTE_ORDER == LITTLE_ENDIAN
547 int i;
548
549 /* Convert TO host byte order */
550 for (i = 0; i < 8; i++)
551 BE_32_TO_8(digest + i * 4, context->state.st32[i]);
552 #else
553 memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
554 #endif
555 kore_mem_zero(context, sizeof(*context));
556 }
557
558
559 /*** SHA-512: *********************************************************/
560 void
561 SHA512Init(SHA2_CTX *context)
562 {
563 memcpy(context->state.st64, sha512_initial_hash_value,
564 sizeof(sha512_initial_hash_value));
565 memset(context->buffer, 0, sizeof(context->buffer));
566 context->bitcount[0] = context->bitcount[1] = 0;
567 }
568
569 #ifdef SHA2_UNROLL_TRANSFORM
570
571 /* Unrolled SHA-512 round macros: */
572
573 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
574 BE_8_TO_64(W512[j], data); \
575 data += 8; \
576 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
577 (d) += T1; \
578 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
579 j++; \
580 } while(0)
581
582
583 #define ROUND512(a,b,c,d,e,f,g,h) do { \
584 s0 = W512[(j+1)&0x0f]; \
585 s0 = sigma0_512(s0); \
586 s1 = W512[(j+14)&0x0f]; \
587 s1 = sigma1_512(s1); \
588 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
589 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
590 (d) += T1; \
591 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
592 j++; \
593 } while(0)
594
595 void
596 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
597 {
598 u_int64_t a, b, c, d, e, f, g, h, s0, s1;
599 u_int64_t T1, W512[16];
600 int j;
601
602 /* Initialize registers with the prev. intermediate value */
603 a = state[0];
604 b = state[1];
605 c = state[2];
606 d = state[3];
607 e = state[4];
608 f = state[5];
609 g = state[6];
610 h = state[7];
611
612 j = 0;
613 do {
614 /* Rounds 0 to 15 (unrolled): */
615 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
616 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
617 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
618 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
619 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
620 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
621 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
622 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
623 } while (j < 16);
624
625 /* Now for the remaining rounds up to 79: */
626 do {
627 ROUND512(a,b,c,d,e,f,g,h);
628 ROUND512(h,a,b,c,d,e,f,g);
629 ROUND512(g,h,a,b,c,d,e,f);
630 ROUND512(f,g,h,a,b,c,d,e);
631 ROUND512(e,f,g,h,a,b,c,d);
632 ROUND512(d,e,f,g,h,a,b,c);
633 ROUND512(c,d,e,f,g,h,a,b);
634 ROUND512(b,c,d,e,f,g,h,a);
635 } while (j < 80);
636
637 /* Compute the current intermediate hash value */
638 state[0] += a;
639 state[1] += b;
640 state[2] += c;
641 state[3] += d;
642 state[4] += e;
643 state[5] += f;
644 state[6] += g;
645 state[7] += h;
646
647 /* Clean up */
648 a = b = c = d = e = f = g = h = T1 = 0;
649 }
650
651 #else /* SHA2_UNROLL_TRANSFORM */
652
653 void
654 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
655 {
656 u_int64_t a, b, c, d, e, f, g, h, s0, s1;
657 u_int64_t T1, T2, W512[16];
658 int j;
659
660 /* Initialize registers with the prev. intermediate value */
661 a = state[0];
662 b = state[1];
663 c = state[2];
664 d = state[3];
665 e = state[4];
666 f = state[5];
667 g = state[6];
668 h = state[7];
669
670 j = 0;
671 do {
672 BE_8_TO_64(W512[j], data);
673 data += 8;
674 /* Apply the SHA-512 compression function to update a..h */
675 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
676 T2 = Sigma0_512(a) + Maj(a, b, c);
677 h = g;
678 g = f;
679 f = e;
680 e = d + T1;
681 d = c;
682 c = b;
683 b = a;
684 a = T1 + T2;
685
686 j++;
687 } while (j < 16);
688
689 do {
690 /* Part of the message block expansion: */
691 s0 = W512[(j+1)&0x0f];
692 s0 = sigma0_512(s0);
693 s1 = W512[(j+14)&0x0f];
694 s1 = sigma1_512(s1);
695
696 /* Apply the SHA-512 compression function to update a..h */
697 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
698 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
699 T2 = Sigma0_512(a) + Maj(a, b, c);
700 h = g;
701 g = f;
702 f = e;
703 e = d + T1;
704 d = c;
705 c = b;
706 b = a;
707 a = T1 + T2;
708
709 j++;
710 } while (j < 80);
711
712 /* Compute the current intermediate hash value */
713 state[0] += a;
714 state[1] += b;
715 state[2] += c;
716 state[3] += d;
717 state[4] += e;
718 state[5] += f;
719 state[6] += g;
720 state[7] += h;
721
722 /* Clean up */
723 a = b = c = d = e = f = g = h = T1 = T2 = 0;
724 }
725
726 #endif /* SHA2_UNROLL_TRANSFORM */
727
728 void
729 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
730 {
731 size_t freespace, usedspace;
732
733 /* Calling with no data is valid (we do nothing) */
734 if (len == 0)
735 return;
736
737 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
738 if (usedspace > 0) {
739 /* Calculate how much free space is available in the buffer */
740 freespace = SHA512_BLOCK_LENGTH - usedspace;
741
742 if (len >= freespace) {
743 /* Fill the buffer completely and process it */
744 memcpy(&context->buffer[usedspace], data, freespace);
745 ADDINC128(context->bitcount, freespace << 3);
746 len -= freespace;
747 data += freespace;
748 SHA512Transform(context->state.st64, context->buffer);
749 } else {
750 /* The buffer is not yet full */
751 memcpy(&context->buffer[usedspace], data, len);
752 ADDINC128(context->bitcount, len << 3);
753 /* Clean up: */
754 usedspace = freespace = 0;
755 return;
756 }
757 }
758 while (len >= SHA512_BLOCK_LENGTH) {
759 /* Process as many complete blocks as we can */
760 SHA512Transform(context->state.st64, data);
761 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
762 len -= SHA512_BLOCK_LENGTH;
763 data += SHA512_BLOCK_LENGTH;
764 }
765 if (len > 0) {
766 /* There's left-overs, so save 'em */
767 memcpy(context->buffer, data, len);
768 ADDINC128(context->bitcount, len << 3);
769 }
770 /* Clean up: */
771 usedspace = freespace = 0;
772 }
773
774 void
775 SHA512Pad(SHA2_CTX *context)
776 {
777 unsigned int usedspace;
778
779 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
780 if (usedspace > 0) {
781 /* Begin padding with a 1 bit: */
782 context->buffer[usedspace++] = 0x80;
783
784 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
785 /* Set-up for the last transform: */
786 memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
787 } else {
788 if (usedspace < SHA512_BLOCK_LENGTH) {
789 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
790 }
791 /* Do second-to-last transform: */
792 SHA512Transform(context->state.st64, context->buffer);
793
794 /* And set-up for the last transform: */
795 memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
796 }
797 } else {
798 /* Prepare for final transform: */
799 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
800
801 /* Begin padding with a 1 bit: */
802 *context->buffer = 0x80;
803 }
804 /* Store the length of input data (in bits) in big endian format: */
805 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
806 context->bitcount[1]);
807 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
808 context->bitcount[0]);
809
810 /* Final transform: */
811 SHA512Transform(context->state.st64, context->buffer);
812
813 /* Clean up: */
814 usedspace = 0;
815 }
816
817 void
818 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
819 {
820 SHA512Pad(context);
821
822 #if BYTE_ORDER == LITTLE_ENDIAN
823 int i;
824
825 /* Convert TO host byte order */
826 for (i = 0; i < 8; i++)
827 BE_64_TO_8(digest + i * 8, context->state.st64[i]);
828 #else
829 memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
830 #endif
831 kore_mem_zero(context, sizeof(*context));
832 }
833
834 /*** SHA-384: *********************************************************/
835 void
836 SHA384Init(SHA2_CTX *context)
837 {
838 memcpy(context->state.st64, sha384_initial_hash_value,
839 sizeof(sha384_initial_hash_value));
840 memset(context->buffer, 0, sizeof(context->buffer));
841 context->bitcount[0] = context->bitcount[1] = 0;
842 }
843
844 /* Equivalent of MAKE_CLONE (which is a no-op) for SHA384 funcs */
845 void
846 SHA384Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
847 {
848 SHA512Transform(state, data);
849 }
850
851 void
852 SHA384Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
853 {
854 SHA512Update(context, data, len);
855 }
856
857 void
858 SHA384Pad(SHA2_CTX *context)
859 {
860 SHA512Pad(context);
861 }
862
863 void
864 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
865 {
866 SHA384Pad(context);
867
868 #if BYTE_ORDER == LITTLE_ENDIAN
869 int i;
870
871 /* Convert TO host byte order */
872 for (i = 0; i < 6; i++)
873 BE_64_TO_8(digest + i * 8, context->state.st64[i]);
874 #else
875 memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
876 #endif
877 /* Zero out state data */
878 kore_mem_zero(context, sizeof(*context));
879 }