kore

An easy to use, scalable and secure web application framework for writing web APIs in C.
Commits | Files | Refs | README | LICENSE | git clone https://git.kore.io/kore.git

sha2.c (25084B)



      1 /*	$OpenBSD: sha2.c,v 1.28 2019/07/23 12:35:22 dtucker Exp $	*/
      2 
      3 /*
      4  * FILE:	sha2.c
      5  * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
      6  *
      7  * Copyright (c) 2000-2001, Aaron D. Gifford
      8  * All rights reserved.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the copyright holder nor the names of contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
     35  */
     36 
     37 /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
     38 
     39 #include <sys/types.h>
     40 #include <string.h>
     41 
     42 #if defined(__APPLE__)
     43 #include <machine/endian.h>
     44 #else
     45 #include <endian.h>
     46 #endif
     47 
     48 #include "kore.h"
     49 #include "sha2.h"
     50 
     51 /*
     52  * UNROLLED TRANSFORM LOOP NOTE:
     53  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
     54  * loop version for the hash transform rounds (defined using macros
     55  * later in this file).  Either define on the command line, for example:
     56  *
     57  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
     58  *
     59  * or define below:
     60  *
     61  *   #define SHA2_UNROLL_TRANSFORM
     62  *
     63  */
     64 #if defined(__amd64__) || defined(__i386__)
     65 #define SHA2_UNROLL_TRANSFORM
     66 #endif
     67 
     68 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
     69 /*
     70  * BYTE_ORDER NOTE:
     71  *
     72  * Please make sure that your system defines BYTE_ORDER.  If your
     73  * architecture is little-endian, make sure it also defines
     74  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
     75  * equivalent.
     76  *
     77  * If your system does not define the above, then you can do so by
     78  * hand like this:
     79  *
     80  *   #define LITTLE_ENDIAN 1234
     81  *   #define BIG_ENDIAN    4321
     82  *
     83  * And for little-endian machines, add:
     84  *
     85  *   #define BYTE_ORDER LITTLE_ENDIAN
     86  *
     87  * Or for big-endian machines:
     88  *
     89  *   #define BYTE_ORDER BIG_ENDIAN
     90  *
     91  * The FreeBSD machine this was written on defines BYTE_ORDER
     92  * appropriately by including <sys/types.h> (which in turn includes
     93  * <machine/endian.h> where the appropriate definitions are actually
     94  * made).
     95  */
     96 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
     97 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
     98 #endif
     99 
    100 
    101 /*** SHA-224/256/384/512 Various Length Definitions ***********************/
    102 /* NOTE: Most of these are in sha2.h */
    103 #define SHA224_SHORT_BLOCK_LENGTH	(SHA224_BLOCK_LENGTH - 8)
    104 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
    105 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
    106 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
    107 
    108 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
    109 #define BE_8_TO_32(dst, cp) do {					\
    110 	(dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |	\
    111 	    ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);	\
    112 } while(0)
    113 
    114 #define BE_8_TO_64(dst, cp) do {					\
    115 	(dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |	\
    116 	    ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) |	\
    117 	    ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) |	\
    118 	    ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);	\
    119 } while (0)
    120 
    121 #define BE_64_TO_8(cp, src) do {					\
    122 	(cp)[0] = (src) >> 56;						\
    123         (cp)[1] = (src) >> 48;						\
    124 	(cp)[2] = (src) >> 40;						\
    125 	(cp)[3] = (src) >> 32;						\
    126 	(cp)[4] = (src) >> 24;						\
    127 	(cp)[5] = (src) >> 16;						\
    128 	(cp)[6] = (src) >> 8;						\
    129 	(cp)[7] = (src);						\
    130 } while (0)
    131 
    132 #define BE_32_TO_8(cp, src) do {					\
    133 	(cp)[0] = (src) >> 24;						\
    134 	(cp)[1] = (src) >> 16;						\
    135 	(cp)[2] = (src) >> 8;						\
    136 	(cp)[3] = (src);						\
    137 } while (0)
    138 
    139 /*
    140  * Macro for incrementally adding the unsigned 64-bit integer n to the
    141  * unsigned 128-bit integer (represented using a two-element array of
    142  * 64-bit words):
    143  */
    144 #define ADDINC128(w,n) do {						\
    145 	(w)[0] += (u_int64_t)(n);					\
    146 	if ((w)[0] < (n)) {						\
    147 		(w)[1]++;						\
    148 	}								\
    149 } while (0)
    150 
    151 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
    152 /*
    153  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
    154  *
    155  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
    156  *   S is a ROTATION) because the SHA-224/256/384/512 description document
    157  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
    158  *   same "backwards" definition.
    159  */
    160 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
    161 #define R(b,x)		((x) >> (b))
    162 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
    163 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
    164 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
    165 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
    166 
    167 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
    168 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
    169 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
    170 
    171 /* Four of six logical functions used in SHA-224 and SHA-256: */
    172 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
    173 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
    174 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
    175 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
    176 
    177 /* Four of six logical functions used in SHA-384 and SHA-512: */
    178 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
    179 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
    180 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
    181 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
    182 
    183 
    184 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
    185 /* Hash constant words K for SHA-224 and SHA-256: */
    186 static const u_int32_t K256[64] = {
    187 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
    188 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
    189 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
    190 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
    191 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
    192 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
    193 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
    194 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
    195 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
    196 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
    197 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
    198 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
    199 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
    200 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
    201 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
    202 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
    203 };
    204 
    205 /* Initial hash value H for SHA-256: */
    206 static const u_int32_t sha256_initial_hash_value[8] = {
    207 	0x6a09e667UL,
    208 	0xbb67ae85UL,
    209 	0x3c6ef372UL,
    210 	0xa54ff53aUL,
    211 	0x510e527fUL,
    212 	0x9b05688cUL,
    213 	0x1f83d9abUL,
    214 	0x5be0cd19UL
    215 };
    216 
    217 /* Hash constant words K for SHA-384 and SHA-512: */
    218 static const u_int64_t K512[80] = {
    219 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
    220 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
    221 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
    222 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
    223 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
    224 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
    225 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
    226 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
    227 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
    228 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
    229 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
    230 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
    231 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
    232 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
    233 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
    234 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
    235 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
    236 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
    237 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
    238 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
    239 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
    240 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
    241 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
    242 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
    243 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
    244 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
    245 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
    246 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
    247 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
    248 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
    249 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
    250 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
    251 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
    252 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
    253 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
    254 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
    255 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
    256 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
    257 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
    258 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
    259 };
    260 
    261 /* Initial hash value H for SHA-512 */
    262 static const u_int64_t sha512_initial_hash_value[8] = {
    263 	0x6a09e667f3bcc908ULL,
    264 	0xbb67ae8584caa73bULL,
    265 	0x3c6ef372fe94f82bULL,
    266 	0xa54ff53a5f1d36f1ULL,
    267 	0x510e527fade682d1ULL,
    268 	0x9b05688c2b3e6c1fULL,
    269 	0x1f83d9abfb41bd6bULL,
    270 	0x5be0cd19137e2179ULL
    271 };
    272 
    273 /* Initial hash value H for SHA-384 */
    274 static const u_int64_t sha384_initial_hash_value[8] = {
    275 	0xcbbb9d5dc1059ed8ULL,
    276 	0x629a292a367cd507ULL,
    277 	0x9159015a3070dd17ULL,
    278 	0x152fecd8f70e5939ULL,
    279 	0x67332667ffc00b31ULL,
    280 	0x8eb44a8768581511ULL,
    281 	0xdb0c2e0d64f98fa7ULL,
    282 	0x47b5481dbefa4fa4ULL
    283 };
    284 
    285 /*** SHA-256: *********************************************************/
    286 void
    287 SHA256Init(SHA2_CTX *context)
    288 {
    289 	memcpy(context->state.st32, sha256_initial_hash_value,
    290 	    sizeof(sha256_initial_hash_value));
    291 	memset(context->buffer, 0, sizeof(context->buffer));
    292 	context->bitcount[0] = 0;
    293 }
    294 
    295 #ifdef SHA2_UNROLL_TRANSFORM
    296 
    297 /* Unrolled SHA-256 round macros: */
    298 
    299 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
    300 	BE_8_TO_32(W256[j], data);					    \
    301 	data += 4;							    \
    302 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
    303 	(d) += T1;							    \
    304 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
    305 	j++;								    \
    306 } while(0)
    307 
    308 #define ROUND256(a,b,c,d,e,f,g,h) do {					    \
    309 	s0 = W256[(j+1)&0x0f];						    \
    310 	s0 = sigma0_256(s0);						    \
    311 	s1 = W256[(j+14)&0x0f];						    \
    312 	s1 = sigma1_256(s1);						    \
    313 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +	    \
    314 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);		    \
    315 	(d) += T1;							    \
    316 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
    317 	j++;								    \
    318 } while(0)
    319 
    320 void
    321 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
    322 {
    323 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
    324 	u_int32_t	T1, W256[16];
    325 	int		j;
    326 
    327 	/* Initialize registers with the prev. intermediate value */
    328 	a = state[0];
    329 	b = state[1];
    330 	c = state[2];
    331 	d = state[3];
    332 	e = state[4];
    333 	f = state[5];
    334 	g = state[6];
    335 	h = state[7];
    336 
    337 	j = 0;
    338 	do {
    339 		/* Rounds 0 to 15 (unrolled): */
    340 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
    341 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
    342 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
    343 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
    344 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
    345 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
    346 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
    347 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
    348 	} while (j < 16);
    349 
    350 	/* Now for the remaining rounds up to 63: */
    351 	do {
    352 		ROUND256(a,b,c,d,e,f,g,h);
    353 		ROUND256(h,a,b,c,d,e,f,g);
    354 		ROUND256(g,h,a,b,c,d,e,f);
    355 		ROUND256(f,g,h,a,b,c,d,e);
    356 		ROUND256(e,f,g,h,a,b,c,d);
    357 		ROUND256(d,e,f,g,h,a,b,c);
    358 		ROUND256(c,d,e,f,g,h,a,b);
    359 		ROUND256(b,c,d,e,f,g,h,a);
    360 	} while (j < 64);
    361 
    362 	/* Compute the current intermediate hash value */
    363 	state[0] += a;
    364 	state[1] += b;
    365 	state[2] += c;
    366 	state[3] += d;
    367 	state[4] += e;
    368 	state[5] += f;
    369 	state[6] += g;
    370 	state[7] += h;
    371 
    372 	/* Clean up */
    373 	a = b = c = d = e = f = g = h = T1 = 0;
    374 }
    375 
    376 #else /* SHA2_UNROLL_TRANSFORM */
    377 
    378 void
    379 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
    380 {
    381 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
    382 	u_int32_t	T1, T2, W256[16];
    383 	int		j;
    384 
    385 	/* Initialize registers with the prev. intermediate value */
    386 	a = state[0];
    387 	b = state[1];
    388 	c = state[2];
    389 	d = state[3];
    390 	e = state[4];
    391 	f = state[5];
    392 	g = state[6];
    393 	h = state[7];
    394 
    395 	j = 0;
    396 	do {
    397 		BE_8_TO_32(W256[j], data);
    398 		data += 4;
    399 		/* Apply the SHA-256 compression function to update a..h */
    400 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
    401 		T2 = Sigma0_256(a) + Maj(a, b, c);
    402 		h = g;
    403 		g = f;
    404 		f = e;
    405 		e = d + T1;
    406 		d = c;
    407 		c = b;
    408 		b = a;
    409 		a = T1 + T2;
    410 
    411 		j++;
    412 	} while (j < 16);
    413 
    414 	do {
    415 		/* Part of the message block expansion: */
    416 		s0 = W256[(j+1)&0x0f];
    417 		s0 = sigma0_256(s0);
    418 		s1 = W256[(j+14)&0x0f];
    419 		s1 = sigma1_256(s1);
    420 
    421 		/* Apply the SHA-256 compression function to update a..h */
    422 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
    423 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
    424 		T2 = Sigma0_256(a) + Maj(a, b, c);
    425 		h = g;
    426 		g = f;
    427 		f = e;
    428 		e = d + T1;
    429 		d = c;
    430 		c = b;
    431 		b = a;
    432 		a = T1 + T2;
    433 
    434 		j++;
    435 	} while (j < 64);
    436 
    437 	/* Compute the current intermediate hash value */
    438 	state[0] += a;
    439 	state[1] += b;
    440 	state[2] += c;
    441 	state[3] += d;
    442 	state[4] += e;
    443 	state[5] += f;
    444 	state[6] += g;
    445 	state[7] += h;
    446 
    447 	/* Clean up */
    448 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
    449 }
    450 #endif /* SHA2_UNROLL_TRANSFORM */
    451 
    452 void
    453 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
    454 {
    455 	u_int64_t	freespace, usedspace;
    456 
    457 	/* Calling with no data is valid (we do nothing) */
    458 	if (len == 0)
    459 		return;
    460 
    461 	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
    462 	if (usedspace > 0) {
    463 		/* Calculate how much free space is available in the buffer */
    464 		freespace = SHA256_BLOCK_LENGTH - usedspace;
    465 
    466 		if (len >= freespace) {
    467 			/* Fill the buffer completely and process it */
    468 			memcpy(&context->buffer[usedspace], data, freespace);
    469 			context->bitcount[0] += freespace << 3;
    470 			len -= freespace;
    471 			data += freespace;
    472 			SHA256Transform(context->state.st32, context->buffer);
    473 		} else {
    474 			/* The buffer is not yet full */
    475 			memcpy(&context->buffer[usedspace], data, len);
    476 			context->bitcount[0] += (u_int64_t)len << 3;
    477 			/* Clean up: */
    478 			usedspace = freespace = 0;
    479 			return;
    480 		}
    481 	}
    482 	while (len >= SHA256_BLOCK_LENGTH) {
    483 		/* Process as many complete blocks as we can */
    484 		SHA256Transform(context->state.st32, data);
    485 		context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
    486 		len -= SHA256_BLOCK_LENGTH;
    487 		data += SHA256_BLOCK_LENGTH;
    488 	}
    489 	if (len > 0) {
    490 		/* There's left-overs, so save 'em */
    491 		memcpy(context->buffer, data, len);
    492 		context->bitcount[0] += len << 3;
    493 	}
    494 	/* Clean up: */
    495 	usedspace = freespace = 0;
    496 }
    497 
    498 void
    499 SHA256Pad(SHA2_CTX *context)
    500 {
    501 	unsigned int	usedspace;
    502 
    503 	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
    504 	if (usedspace > 0) {
    505 		/* Begin padding with a 1 bit: */
    506 		context->buffer[usedspace++] = 0x80;
    507 
    508 		if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
    509 			/* Set-up for the last transform: */
    510 			memset(&context->buffer[usedspace], 0,
    511 			    SHA256_SHORT_BLOCK_LENGTH - usedspace);
    512 		} else {
    513 			if (usedspace < SHA256_BLOCK_LENGTH) {
    514 				memset(&context->buffer[usedspace], 0,
    515 				    SHA256_BLOCK_LENGTH - usedspace);
    516 			}
    517 			/* Do second-to-last transform: */
    518 			SHA256Transform(context->state.st32, context->buffer);
    519 
    520 			/* Prepare for last transform: */
    521 			memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
    522 		}
    523 	} else {
    524 		/* Set-up for the last transform: */
    525 		memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
    526 
    527 		/* Begin padding with a 1 bit: */
    528 		*context->buffer = 0x80;
    529 	}
    530 	/* Store the length of input data (in bits) in big endian format: */
    531 	BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
    532 	    context->bitcount[0]);
    533 
    534 	/* Final transform: */
    535 	SHA256Transform(context->state.st32, context->buffer);
    536 
    537 	/* Clean up: */
    538 	usedspace = 0;
    539 }
    540 
    541 void
    542 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
    543 {
    544 	SHA256Pad(context);
    545 
    546 #if BYTE_ORDER == LITTLE_ENDIAN
    547 	int	i;
    548 
    549 	/* Convert TO host byte order */
    550 	for (i = 0; i < 8; i++)
    551 		BE_32_TO_8(digest + i * 4, context->state.st32[i]);
    552 #else
    553 	memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
    554 #endif
    555 	kore_mem_zero(context, sizeof(*context));
    556 }
    557 
    558 
    559 /*** SHA-512: *********************************************************/
    560 void
    561 SHA512Init(SHA2_CTX *context)
    562 {
    563 	memcpy(context->state.st64, sha512_initial_hash_value,
    564 	    sizeof(sha512_initial_hash_value));
    565 	memset(context->buffer, 0, sizeof(context->buffer));
    566 	context->bitcount[0] = context->bitcount[1] =  0;
    567 }
    568 
    569 #ifdef SHA2_UNROLL_TRANSFORM
    570 
    571 /* Unrolled SHA-512 round macros: */
    572 
    573 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
    574 	BE_8_TO_64(W512[j], data);					    \
    575 	data += 8;							    \
    576 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
    577 	(d) += T1;							    \
    578 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
    579 	j++;								    \
    580 } while(0)
    581 
    582 
    583 #define ROUND512(a,b,c,d,e,f,g,h) do {					    \
    584 	s0 = W512[(j+1)&0x0f];						    \
    585 	s0 = sigma0_512(s0);						    \
    586 	s1 = W512[(j+14)&0x0f];						    \
    587 	s1 = sigma1_512(s1);						    \
    588 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +	    \
    589              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);		    \
    590 	(d) += T1;							    \
    591 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
    592 	j++;								    \
    593 } while(0)
    594 
    595 void
    596 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
    597 {
    598 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
    599 	u_int64_t	T1, W512[16];
    600 	int		j;
    601 
    602 	/* Initialize registers with the prev. intermediate value */
    603 	a = state[0];
    604 	b = state[1];
    605 	c = state[2];
    606 	d = state[3];
    607 	e = state[4];
    608 	f = state[5];
    609 	g = state[6];
    610 	h = state[7];
    611 
    612 	j = 0;
    613 	do {
    614 		/* Rounds 0 to 15 (unrolled): */
    615 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
    616 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
    617 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
    618 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
    619 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
    620 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
    621 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
    622 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
    623 	} while (j < 16);
    624 
    625 	/* Now for the remaining rounds up to 79: */
    626 	do {
    627 		ROUND512(a,b,c,d,e,f,g,h);
    628 		ROUND512(h,a,b,c,d,e,f,g);
    629 		ROUND512(g,h,a,b,c,d,e,f);
    630 		ROUND512(f,g,h,a,b,c,d,e);
    631 		ROUND512(e,f,g,h,a,b,c,d);
    632 		ROUND512(d,e,f,g,h,a,b,c);
    633 		ROUND512(c,d,e,f,g,h,a,b);
    634 		ROUND512(b,c,d,e,f,g,h,a);
    635 	} while (j < 80);
    636 
    637 	/* Compute the current intermediate hash value */
    638 	state[0] += a;
    639 	state[1] += b;
    640 	state[2] += c;
    641 	state[3] += d;
    642 	state[4] += e;
    643 	state[5] += f;
    644 	state[6] += g;
    645 	state[7] += h;
    646 
    647 	/* Clean up */
    648 	a = b = c = d = e = f = g = h = T1 = 0;
    649 }
    650 
    651 #else /* SHA2_UNROLL_TRANSFORM */
    652 
    653 void
    654 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
    655 {
    656 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
    657 	u_int64_t	T1, T2, W512[16];
    658 	int		j;
    659 
    660 	/* Initialize registers with the prev. intermediate value */
    661 	a = state[0];
    662 	b = state[1];
    663 	c = state[2];
    664 	d = state[3];
    665 	e = state[4];
    666 	f = state[5];
    667 	g = state[6];
    668 	h = state[7];
    669 
    670 	j = 0;
    671 	do {
    672 		BE_8_TO_64(W512[j], data);
    673 		data += 8;
    674 		/* Apply the SHA-512 compression function to update a..h */
    675 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
    676 		T2 = Sigma0_512(a) + Maj(a, b, c);
    677 		h = g;
    678 		g = f;
    679 		f = e;
    680 		e = d + T1;
    681 		d = c;
    682 		c = b;
    683 		b = a;
    684 		a = T1 + T2;
    685 
    686 		j++;
    687 	} while (j < 16);
    688 
    689 	do {
    690 		/* Part of the message block expansion: */
    691 		s0 = W512[(j+1)&0x0f];
    692 		s0 = sigma0_512(s0);
    693 		s1 = W512[(j+14)&0x0f];
    694 		s1 =  sigma1_512(s1);
    695 
    696 		/* Apply the SHA-512 compression function to update a..h */
    697 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
    698 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
    699 		T2 = Sigma0_512(a) + Maj(a, b, c);
    700 		h = g;
    701 		g = f;
    702 		f = e;
    703 		e = d + T1;
    704 		d = c;
    705 		c = b;
    706 		b = a;
    707 		a = T1 + T2;
    708 
    709 		j++;
    710 	} while (j < 80);
    711 
    712 	/* Compute the current intermediate hash value */
    713 	state[0] += a;
    714 	state[1] += b;
    715 	state[2] += c;
    716 	state[3] += d;
    717 	state[4] += e;
    718 	state[5] += f;
    719 	state[6] += g;
    720 	state[7] += h;
    721 
    722 	/* Clean up */
    723 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
    724 }
    725 
    726 #endif /* SHA2_UNROLL_TRANSFORM */
    727 
    728 void
    729 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
    730 {
    731 	size_t	freespace, usedspace;
    732 
    733 	/* Calling with no data is valid (we do nothing) */
    734 	if (len == 0)
    735 		return;
    736 
    737 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
    738 	if (usedspace > 0) {
    739 		/* Calculate how much free space is available in the buffer */
    740 		freespace = SHA512_BLOCK_LENGTH - usedspace;
    741 
    742 		if (len >= freespace) {
    743 			/* Fill the buffer completely and process it */
    744 			memcpy(&context->buffer[usedspace], data, freespace);
    745 			ADDINC128(context->bitcount, freespace << 3);
    746 			len -= freespace;
    747 			data += freespace;
    748 			SHA512Transform(context->state.st64, context->buffer);
    749 		} else {
    750 			/* The buffer is not yet full */
    751 			memcpy(&context->buffer[usedspace], data, len);
    752 			ADDINC128(context->bitcount, len << 3);
    753 			/* Clean up: */
    754 			usedspace = freespace = 0;
    755 			return;
    756 		}
    757 	}
    758 	while (len >= SHA512_BLOCK_LENGTH) {
    759 		/* Process as many complete blocks as we can */
    760 		SHA512Transform(context->state.st64, data);
    761 		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
    762 		len -= SHA512_BLOCK_LENGTH;
    763 		data += SHA512_BLOCK_LENGTH;
    764 	}
    765 	if (len > 0) {
    766 		/* There's left-overs, so save 'em */
    767 		memcpy(context->buffer, data, len);
    768 		ADDINC128(context->bitcount, len << 3);
    769 	}
    770 	/* Clean up: */
    771 	usedspace = freespace = 0;
    772 }
    773 
    774 void
    775 SHA512Pad(SHA2_CTX *context)
    776 {
    777 	unsigned int	usedspace;
    778 
    779 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
    780 	if (usedspace > 0) {
    781 		/* Begin padding with a 1 bit: */
    782 		context->buffer[usedspace++] = 0x80;
    783 
    784 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
    785 			/* Set-up for the last transform: */
    786 			memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
    787 		} else {
    788 			if (usedspace < SHA512_BLOCK_LENGTH) {
    789 				memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
    790 			}
    791 			/* Do second-to-last transform: */
    792 			SHA512Transform(context->state.st64, context->buffer);
    793 
    794 			/* And set-up for the last transform: */
    795 			memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
    796 		}
    797 	} else {
    798 		/* Prepare for final transform: */
    799 		memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
    800 
    801 		/* Begin padding with a 1 bit: */
    802 		*context->buffer = 0x80;
    803 	}
    804 	/* Store the length of input data (in bits) in big endian format: */
    805 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
    806 	    context->bitcount[1]);
    807 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
    808 	    context->bitcount[0]);
    809 
    810 	/* Final transform: */
    811 	SHA512Transform(context->state.st64, context->buffer);
    812 
    813 	/* Clean up: */
    814 	usedspace = 0;
    815 }
    816 
    817 void
    818 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
    819 {
    820 	SHA512Pad(context);
    821 
    822 #if BYTE_ORDER == LITTLE_ENDIAN
    823 	int	i;
    824 
    825 	/* Convert TO host byte order */
    826 	for (i = 0; i < 8; i++)
    827 		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
    828 #else
    829 	memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
    830 #endif
    831 	kore_mem_zero(context, sizeof(*context));
    832 }
    833 
    834 /*** SHA-384: *********************************************************/
    835 void
    836 SHA384Init(SHA2_CTX *context)
    837 {
    838 	memcpy(context->state.st64, sha384_initial_hash_value,
    839 	    sizeof(sha384_initial_hash_value));
    840 	memset(context->buffer, 0, sizeof(context->buffer));
    841 	context->bitcount[0] = context->bitcount[1] = 0;
    842 }
    843 
    844 /* Equivalent of MAKE_CLONE (which is a no-op) for SHA384 funcs */
    845 void
    846 SHA384Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
    847 {
    848 	SHA512Transform(state, data);
    849 }
    850 
    851 void
    852 SHA384Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
    853 {
    854 	SHA512Update(context, data, len);
    855 }
    856 
    857 void
    858 SHA384Pad(SHA2_CTX *context)
    859 {
    860 	SHA512Pad(context);
    861 }
    862 
    863 void
    864 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
    865 {
    866 	SHA384Pad(context);
    867 
    868 #if BYTE_ORDER == LITTLE_ENDIAN
    869 	int	i;
    870 
    871 	/* Convert TO host byte order */
    872 	for (i = 0; i < 6; i++)
    873 		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
    874 #else
    875 	memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
    876 #endif
    877 	/* Zero out state data */
    878 	kore_mem_zero(context, sizeof(*context));
    879 }